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Abstract 

The size structure of phytoplankton communities influences important ecological and 

biogeochemical processes, including the transfer of energy through marine food webs. A 

variety of algorithms have been developed to estimate phytoplankton size classes (PSCs) 

from satellite ocean color data. However, many of these algorithms were developed for 

application to the global ocean, and their performance in more productive, optically 

complex coastal and continental shelf regions warrants evaluation. In this study, several 

existing PSC models were applied in the Northeast U.S. continental shelf (NES) region 

and compared with in situ PSC estimates derived from a local HPLC pigment data set. 

The effect of regional re-parameterization and incorporation of sea surface temperature 

(SST) into existing abundance-based model frameworks was investigated and model 

performance was assessed using an independent data set. Abundance-based model re-

parameterization alone did not result in significant improvement in model performance 

compared with other models. However, the inclusion of SST led to a consistent reduction 

in model error for all size classes. Of two absorption-based algorithms tested, the best 

performing approach displayed similar performance metrics to the regional SST-

dependent abundance-based model. The SST-dependent model and the absorption-

based method were applied to monthly composites of the NES region for April and 

September 2019 and qualitatively compared. The results highlight the benefit of 

considering SST in abundance-based models and the applicability of absorption-based 

PSC methods in optically complex regions. 
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1. Introduction 

Phytoplankton form the base of pelagic food webs and are a key component in 

biogeochemical cycles that ultimately impact global climate (Behrenfeld et al., 2006; Field 

et al., 1998). Phytoplankton in the ocean are taxonomically diverse and exhibit an array 

of unique morphological and physiological characteristics (Caron et al., 2012; Finkel et 

al., 2010). Phytoplankton community composition and biomass are highly variable in time 

and space, changing in response to both bottom-up (e.g., environmental conditions, 

nutrient availability) and top-down (e.g., grazing) controls. Understanding the dynamics 

of phytoplankton abundance and community structure is critical for studies of marine 

ecology and biogeochemistry. 

Functional traits or groupings have been applied as a means of characterizing 

phytoplankton communities (IOCCG, 2014; Le Quéré et al., 2005; Nair et al., 2008). 

Phytoplankton cell size is considered a fundamental trait as it affects many important 

biological and ecological processes, including photosynthesis (Uitz et al., 2008), nutrient 

uptake (Raven, 1998), growth rate (Marañón, 2015), light absorption (Bricaud et al., 2004; 

Ciotti et al., 2002), carbon export (Guidi et al., 2009; Mouw et al., 2016), and the transfer 

of energy to higher trophic levels (Boyce et al., 2015). Thus, the size structure of 

phytoplankton assemblages can serve as a valuable indicator of the state of marine 

ecosystems and their response to environmental changes, including ocean warming 

(Marinov et al., 2010; Morán et al., 2010; Platt and Sathyendranath, 2008). Following the 

classification of Sieburth et al. (1978), phytoplankton are conventionally partitioned into 

three phytoplankton size classes (PSCs; see Table 1 for a list of symbols and 
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Table 1. Symbols and definitions. 

Symbol Definition Units 
ad absorption coefficient of non-algal particles m-1 

adg absorption coefficient of colored dissolved organic matter + non-algal particles m-1 

ag absorption coefficient of colored dissolved organic matter m-1 

[Allo] alloxanthin concentration mg m-3 

aph absorption coefficient of phytoplankton m-1 

aph* chorophyll-specific absorption coefficient of phytoplankton m2 mg-1 

[But-fuco] 19’-butanoyloxyfucoxanthin concentration mg m-3 

[Chl-a] chlorophyll-a concentration mg m-3 

CHPLC chlorophyll-a concentration measured by high-performance liquid
chromatography 

mg m-3 

Csize chlorophyll-a concentration specific to size class “size” mg m-3 

Cmsize asymptotic maximum chlorophyll-a concentration of size class “size” mg m-3 

Dsize fraction of size class “size” as total chlorophyll-a tends to zero unitless 
Fsize fraction of size class “size” unitless 
[Fuco] fucoxanthin concentration mg m-3 

GB Georges Bank – 
GoM Gulf of Maine – 
[Hex-fuco] 19’-hexanoyloxyfucoxanthin concentration mg m-3 

MAB Middle Atlantic Bight – 
MAD mean absolute difference unitless 
NES northeast U.S. continental shelf – 
[Perid] peridinin concentration mg m-3 

PSC phytoplankton size class – 
r Pearson correlation coefficient unitless 
Rrs remote sensing reflectance sr-1 

S slope of a Type-II linear regression unitless 
SST sea surface temperature ºC 
SFF size-fractionated filtration – 
[TAcc] total concentration of accessory pigments mg m-3 

[TChl-b] total chlorophyll-b concentration mg m-3 

[Zea] zeaxanthin concentration mg m-3 

d bias unitless 

CDP mg m-3 chlorophyll-a concentration reconstructed from the weighted sum of diagnostic 
pigments 
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abbreviations used in this text): picoplankton (0.2-2 µm), nanoplankton (2-20 µm) and 

microplankton (20-200 µm). 

A number of methods exist for quantifying PSCs in situ, including microscopy, size-

fractionated filtration (SFF), conventional and imaging flow cytometry (Olson and Sosik, 

2007), and high-performance liquid chromatography (HPLC) pigment analysis, each with 

their own advantages and limitations (IOCCG, 2014). While these methods are extremely 

useful, they can be labor-intensive, time consuming, and expensive, and as a result, the 

availability of in situ PSC data remains limited, thus limiting their use in studying and 

modeling large-scale, temporally dynamic ocean and ecosystem processes. Satellite 

remote sensing enables frequent, synoptic coverage of upper ocean optical properties 

and provides a means to characterize PSCs at spatial and temporal resolutions 

unattainable with in situ sampling. Given this fact, deriving information on phytoplankton 

size structure from satellite ocean color data is an active area of research, and a variety 

of algorithms have been developed for both global ocean (Brewin et al., 2015; Hirata et 

al., 2011) and regional applications (Brito et al., 2015; Di Cicco et al., 2017; Gittings et 

al., 2019; Sun et al., 2018, 2019a). Most current approaches for detecting PSCs from 

remote sensing can be categorized as either abundance-based or absorption-based, 

differing in terms of their theoretical frameworks and the remotely sensed parameters 

used as inputs (IOCCG, 2014; Mouw et al., 2017b). 

Abundance-based algorithms exploit the generally observed co-variance of 

phytoplankton cell size and total biomass, indexed by its proxy, chlorophyll-a 

concentration ([Chl-a]; mg m-3), to estimate the dominance or relative biomass fractions 

of PSCs (Brewin et al., 2010; Hirata et al., 2011; Uitz et al., 2006). For example, it is well 
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established that picoplankton, such as the cyanobacteria Prochlorococcus and 

Synechococcus, dominate in low-nutrient oligotrophic environments (e.g., central ocean 

gyres) and microplankton, including diatoms and dinoflagellates, comprise a greater 

fraction of total biomass in eutrophic, nutrient-rich regions (e.g., upwelling zones) 

(Chisholm et al., 1988; Margalef, 1978; Yentsch and Phinney, 1989). Abundance-based 

methods rely on empirical or semi-empirical relationships based on coincident in situ 

observations of size-fractionated [Chl-a], typically from HPLC pigments or SFF, and total 

[Chl-a] to model PSCs as a function of total [Chl-a]. Given that [Chl-a] is perhaps the most 

widely used and well-validated satellite ocean color product, abundance-based methods 

offer a straightforward, “user-friendly” approach for estimating PSCs from remote sensing. 

Yet, these methods are an indirect approximation of size structure, and the empirical 

relationships underlying them are subject to change both temporally and geographically, 

requiring ongoing assessment and re-calibration (Mouw et al., 2017b). Recent studies 

have demonstrated that the incorporation of additional environmental information 

attainable from remote sensing, such as sea surface temperature (SST), can improve the 

retrieval accuracy of abundance-based models (Brewin et al., 2017a; Moore and Brown, 

2020; Ward, 2015). 

Absorption-based algorithms distinguish PSCs directly from spectral variations in 

phytoplankton absorption (aph(l); l denotes wavelength dependence), the amount of light 

absorbed by phytoplankton across the visible spectrum, which influences and can be 

derived from the reflectance signal measured by a satellite ocean color sensor (remote 

sensing reflectance (Rrs(l)) (Ciotti and Bricaud, 2006; Devred et al., 2011; Mouw and 

Yoder, 2010). Larger cells are less efficient at absorbing light than smaller cells as a result 
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of pigment packaging, which results in a flattening of the chlorophyll-normalized 

phytoplankton absorption spectrum (aph*(l)) with increasing cell size, with the most 

pronounced change around 440 nm (Bricaud et al., 1988; Morel, 1987; Morel and Bricaud, 

1981). Ciotti et al. (2002) demonstrated that despite physiological and taxonomic 

variability, cell size could explain >80% of the variance in aph*(l) spectral shape over the 

wavelength range 400-700 nm. An advantage of absorption-based methods over 

abundance-based approaches is that they can detect changes in PSCs that do not co-

vary with total [Chl-a] (e.g., blooms of smaller cells). Moreover, as absorption-based 

methods are based on a direct optical response rather than indirect empirical 

relationships, they are less likely to require re-calibration over time or for different ocean 

regions. However, the limited spectral resolution of current multi-spectral ocean color 

instruments and inherent ambiguity in the optical signals of in-water constituents can 

make retrieving accurate aph(l) spectral shape and magnitude challenging. This is 

particularly true in optically complex coastal and continental shelf waters with high 

concentrations of colored dissolved organic matter (CDOM) and non-algal particles 

(NAP), which overlap with phytoplankton in their contribution to the total light absorption 

in the blue region of the spectra, where satellite retrievals are subject to large 

uncertainties related to atmospheric correction and issues with sky and sun glint (Estrella 

et al., 2020). 

Given the unique strengths and limitations of these different satellite PSC algorithm 

approaches, evaluating their performance in different ocean regions and whether they 

may be optimized for regional application is essential. Several studies have successfully 

retrieved PSCs at regional scales, including the Red Sea (Gittings et al., 2019), the 
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Mediterranean Sea (Di Cicco et al., 2017), the Western Iberian coast (Brito et al., 2015), 

and the continental shelf seas of China (Sun et al., 2018, 2019a) through re-

parameterization of global abundance-based models with local in situ data sets. These 

studies demonstrate the potential for PSC model optimization in other ocean regions, 

which may provide benefits for regional-scale applications, including food web modeling 

and ecosystem-based fisheries management. 

The northeast U.S. continental shelf (NES) is a highly productive, temperate 

marine ecosystem that supports many commercially and recreationally important 

fisheries (Hare et al., 2016; National Marine Fisheries Service, 2018). The NES is 

physically dynamic and optically complex (Mannino et al., 2014; Pan et al., 2008), thus 

necessitating evaluation and potential optimization of existing PSC algorithms to ensure 

their accuracy. Phytoplankton species composition and biomass in the NES vary 

seasonally, with diatoms dominating in a typical winter-spring bloom and other taxa, such 

as cryptophytes and cyanobacteria, becoming more prevalent during the summer 

(O’Reilly and Zetlin, 1998; Pan et al., 2011; Richaud et al., 2016). 

In this study, we aim to evaluate and optimize several existing abundance-based 

and absorption-based PSC algorithms for application to ocean color imagery in the NES 

region, with the goal of improving PSC imagery products for long-term time series 

investigations and integration into regional ecosystem and fisheries modeling efforts. 

Primarily, we address the following questions: 

• To what extent does regional re-parameterization using a local in situ data set improve 

the performance of abundance-based PSC models in the NES? 
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• Does incorporating SST into an abundance-based model improve PSC retrieval 

accuracy in the NES? 

• How do abundance-based and absorption-based algorithms compare in their 

estimations of PSCs in the NES? 

2. Data and methods 

2.1 Study area 

The NES region (35ºN-45.5ºN, 64ºW-77ºW) extends along the east coast of the 

U.S. from Cape Hatteras, NC, USA to Nova Scotia, Canada (Fig. 1). The region includes 

three primary subregions: the Mid-Atlantic Bight (MAB; 36ºN-41ºN, 70ºW-76ºW), Georges 

Bank (GB; 40ºN-42ºN, 66ºW-70ºW), and the Gulf of Maine (GoM; 42ºN-45ºN, 66ºW-

71ºW). The shelf is commonly defined as inshore of the 200 m isobath, with deeper basins 

in the GoM exceeding 300 m depth. The NES is influenced by two major current systems: 

the warm, saline, northward flowing Gulf Stream, and the colder, fresher, southward 

flowing Labrador Current. Mesoscale features (e.g., eddies, fronts) and interannual 

variations in the path and flow of these two currents affect nutrient fluxes, productivity, 

and phytoplankton community composition across the region (Saba et al., 2015; 

Schollaert et al., 2004). The NES has experienced rapid warming in recent decades 

(Pershing et al., 2015), which has been connected to changes in phytoplankton bloom 

dynamics (Hunter-Cevera et al., 2016) and the distributions of fish and other marine 

species (Friedland et al., 2020; Kleisner et al., 2017). The NES is a well-studied region 

relative to other parts of the global ocean, with routine oceanographic surveys conducted 

throughout the region since the late 1970s (O’Reilly and Zetlin, 1998). At present, NOAA’s 
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Northeast Fisheries Science center Ecosystem Monitoring (EcoMon) program provides a 

range of hydrographic and biological data for the region (National Marine Fisheries 

Service, 2020). 

2.2 In situ data 

Discrete surface (upper 10 m) samples of HPLC pigments and the spectral 

absorption of phytoplankton (aph(l)), CDOM (ag(l)), and NAP (ad(l)) collected throughout 

the NES region from 2003 to 2018 were acquired from NASA’s SeaWiFS Bio-optical 

Archive and Storage System (SeaBASS; https://seabass.gsfc.nasa.gov/) (Fig. 1). The 

compiled data were from several different cruises and experiments, with the largest 

portion from the Impacts of Climate Variability on Primary Production and Carbon 

Distributions in the Middle Atlantic Bight and Gulf of Maine (CliVEC) field campaign 

(Mannino et al., 2009) and the University of New Hampshire Western Gulf of Maine time 

series (Moore, 2006) (Table 2). Only HPLC pigment samples with a full set of seven 

diagnostic pigments required for estimating PSCs (fucoxanthin, peridinin, 19’-

hexanoyloxyfucoxanthin, 19’-butanoyloxyfucoxanthin, alloxanthin, total chlorophyll-b, and 

zeaxanthin) were included in this analysis (see Section 2.6). For the absorption data, only 

measurements with 1-nm spectral resolution over the range 400-700 nm with coincident 

HPLC pigment measurements were retained. In order to calculate the combined 

absorption of CDOM and NAP (adg(l)), a parameter routinely retrieved by satellite 

inversion algorithms, measurements of ag(l) without matching ad(l) (and vice-versa) were 

excluded. For stations with multiple samples in the upper 10 m, the data were averaged. 

To limit the effects of very shallow water and near-coastal processes, stations with a depth 

<25 m were removed prior to analysis. 
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 In addition to the data obtained from SeaBASS, 40 HPLC, 24 aph(l), and 14 

ag(l)/ad(l) samples collected by our group on the Summer 2018 and Fall 2018 NOAA 

EcoMon surveys were also included. HPLC samples from these cruises were collected 

according to the NASA Ocean Optics Protocols (Mueller et al., 2003) and analyzed at 

Horn Point Laboratory (University of Maryland Center for Environmental Science). 

Absorption measurements were collected and analyzed following the procedures detailed 

in Mouw et al. (2017a). 

 

 

Figure 1 Locations of the in situ data and satellite match-ups used in this study. The 200 and 2000 m isobaths from the 
2019 General Bathymetric Chart of the Oceans (https://www.gebco.net/) are shown for reference.  See Table 2 for 
information on data sources. 
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03(68
18
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Al

200
2006Western Gulf of Maine - Moore, 2006

0037 (16)Jun, Jul201(ECOA-1) - Mannino et al., 2015
East Coast Ocean

0026 (15)Ju200
Marra et al., 2008
Quantum Efificiency (OnDeque3) -
Optical and Nutrient Dependence of

(86
15

(101
18

(212
42
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May, Jun,
Feb

201
2009Distributions in the Middle Atlantic

Bight and Gulf of Maine (CliVEC)
Mannino et al., 

Table 2. Summary of in situ data sources. N denotes the number of samples (after QA) 

and the number in parentheses refers to the number of satellite match-ups. Citations for 

the individual data sets from SeaBASS are also provided. 

Cruise/Experiment - P.I.(s) Years(s) Month(s) N, 
HPLC 

N, 
aph() 

N, 
adg() 

Impacts of Climate Variability on 
Primary Production and Carbon 

NOAA Ecosystem Monitoring 
(EcoMon) - Mannino et al., 2013 

2013, 
2018 

Feb, Aug, 
Nov 71 (41) 24 

(18) 
14 
(9) 

Tara Oceans Expedition - Boss et al., 
2009 2012 Jan, Feb 2 0 0 

LOBO timeseries - Roesler, 2009 2009 Mar 6 0 0 

Ocean Color Cal Val (OCV) - Hooker 
et al., 2005 

2007, 
2009 

May, Nov 16 (7) 0 0 

Delaware and Chesapeake Bay 
Fluorescence - Chekalyuk, 2008 2008 May 1 0 0 

BIOCOMPLEXITY - Harding, 2001 2003 Aug 2 (1) 0 0 
786 214 173Totals: (368) (123) (99) 
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Figure 2. Relative frequencies of in situ observations from the NES data set used in this study (blue stairs): (a) HPLC-
measured [Chl-a] (N = 786), (b) aph(443) (N = 214) and (c) adg(443) (N = 173), with their respective monthly 
distributions (d-f, black black bars). Global distributions from an OC-CCI v4.2 annual satellite composite for 2018 are 
overlaid for comparison (red line). Frequencies were normalized by the maximum value. 

Quality assurance (QA) for the HPLC pigment data was carried out following Uitz 

et al. (2006). First, to account for differences in the detection limits and sensitivities of 

different HPLC processing methods, pigment concentrations <0.001 mg m-3 were set to 

zero. Then, utilizing the relationship of Trees et al. (2000), who demonstrated that [Chl-a] 

and the total concentration of major accessory pigments ([TAcc]) co-vary in log-linear 

fashion within the euphotic zone of diverse oceanic regions, a robust linear regression 

(MATLAB function robustfit.m) of [TAcc] on [Chl-a] was performed to identify outliers. Any 

points exceeding three standard deviations with respect to the mean co-variation were 
13 



  

              

         

             

          

          

                

         

           

          

 

        

             

           

              

         

       

       

           

      

            

          

            

excluded. QA for the aph(l), ag(l), and ad(l) data consisted of the following steps: (1) 

overly noisy spectra were manually identified and removed; (2) spectra with negative 

values not exceeding -0.1 were offset by the most negative value (Grunert et al., 2019); 

(3) spectra were smoothed using a Savitsky-Golay filtering technique (MATLAB function 

sgolayfilt.m) with a 9-nm smoothing window (Torrecilla et al., 2011). The ag(l) and ad(l) 

values were then summed to obtain adg(l). After QA, a total of 786 HPLC, 214 aph(l), and 

173 adg(l) measurements remained. The pigment data were representative of every 

month of the year, with a slight bias towards summer months, whereas aph(l) and adg(l) 

data were almost exclusively limited to summer and fall months (Fig. 2). 

2.3 Satellite data 

Daily, Level-3 mapped (4-km resolution, sinusoidal projected) estimates of Rrs(l), 

[Chl-a], aph(l), and adg(l) from the most recent version of the European Space Agency’s 

(ESA) Ocean Colour – Climate Change Initiative product (OC-CCI v4.2; Sathyendranath 

et al., 2019) at the time of the initiation of this study were downloaded from https://esa-

oceancolour-cci.org/. OC-CCI v4.2 consists of merged, bias-corrected data from the Sea-

viewing Wide-Field-of-View Sensor (SeaWiFS), Medium Resolution Imaging 

Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua), 

and Visible Infrared Imaging Radiometer Suite (VIIRS-SNPP) satellite sensors over the 

period 1997-2019. The multi-sensor data are band-shifted to SeaWiFS reference 

wavelengths (412, 443, 490, 510, 555, and 670 nm) and include per-pixel uncertainty 

estimates. OC-CCI v4.2 also incorporates the latest NASA re-processing (R2018), which 

corrected for significant drift in the MODIS-Aqua sensor. The reader is referred to the OC-

14 
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CCI v4.2 Product User Guide (https://esa-oceancolour-cci.org/documents-list) for a more 

detailed overview. 

The standard OC-CCI [Chl-a] algorithm uses a blended combination of NASA’s 

OC3, OCI, and OC5 algorithms (Gohin et al., 2002; Hu et al., 2012; O’Reilly et al., 1998) 

based on optical water classes (Jackson et al., 2017; Moore et al., 2009), which improves 

performance in optically complex waters. In addition to the standard algorithm, we also 

calculated [Chl-a] using the regional algorithm of Pan et al. (2010). This regional empirical 

algorithm was developed using coincident in situ measurements of HPLC pigments and 

Rrs(l) collected at various locations across the MAB and GoM and was applied using the 

published coefficients for SeaWiFS wavebands. The standard OC-CCI aph(l) and adg(l) 

products, derived using the Quasi-Analytical Algorithm (QAA_v5) of Lee et al. (2009), 

were used in this study. 

For validation of the satellite input products ([Chl-a], aph(l), and adg(l)) and PSC 

algorithm output, in situ samples were matched in time and space with the satellite data. 

Following convention, match-ups were determined as the geometric median of a 3x3 pixel 

box centered on the sampling location (nearest latitude and longitude), and only match-

ups with at least 5 valid pixels and a median coefficient of variation of <0.15 for Rrs(l) 

bands between 412 and 555 nm were used to ensure spatial homogeneity (Bailey and 

Werdell, 2006). As OC-CCI is a daily, multi-sensor product, a same-day coincidence 

window was used rather than the more stringent ±3-hour window recommended for a 

single mission by Bailey and Werdell (2006). This resulted in 368 [Chl-a], 123 aph(l), and 

99 adg(l) match-ups (Table 2). Furthermore, all in situ pigment samples were matched 

with daily estimates of SST from the Multi-scale Ultra-high Resolution SST analysis (MUR 

15 
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v4.1) (Chin et al., 2017). MUR is a gap-filled, 1-km resolution gridded global SST product 

that combines night-time infrared SST retrievals from the MODIS sensor with multiple 

other in-orbit infrared/microwave instruments and data from NOAA’s in situ SST Quality 

Monitor (iQuam) database (Xu and Ignatov, 2014). Data for the period June 1, 2002 -

December 31, 2019 were downloaded freely from NASA’s Physical Oceanography 

Distributed Active Archive Center (PO.DAAC; https://podaac.jpl.nasa.gov). 

2.4 Data partitioning for model re-parameterization and validation 

To allow for both the re-parameterization of abundance-based PSC models (see 

Sections 2.7.1.6 and 2.7.1.7) and independent model validation, the pigment data were 

split into two separate data sets. Of the 786 total samples, the 368 samples with a valid 

satellite [Chl-a] match-up (47% of the data) were removed and reserved for independent 

validation and are referred to as the validation data set. The remainder of the data (N = 

418) were used for model re-parameterization and are referred to as the parameterization 

data set. 

2.5 Statistical metrics 

We used several statistical metrics to compare algorithm estimates with the in situ 

data and evaluate algorithm performance. To measure accuracy, we used the mean 

absolute difference (MAD). While many studies commonly consider the root mean square 

difference (RMSD), MAD has been recommended as a more unambiguous and 

appropriate metric for model assessment (Seegers et al., 2018; Willmott and Matsuura, 

2005). To measure systematic bias, we used the mean bias (d). The MAD and d are 

calculated according to: 
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' (��� = ∑+.'|�+ − �+| (1)
( 

and 

' � = 
(
∑( (�+ − �+), (2)+.' 

where M, O, and N represent the modeled value (i.e., satellite estimate), the observed 

value (i.e., in situ), and the number of samples, respectively. A positive (negative) d 

indicates a model’s tendency to systematically overestimate (underestimate) the variable 

of interest. We also computed the Pearson correlation coefficient (r) and slope of a Type-

II linear regression (S) for additional comparison between modeled and in situ values 

(Brewin et al., 2015b; Werdell et al., 2013). Type-II regression (MATLAB function 

lsqfitgm.m) was applied rather than Type-I regression as it accounts for the inherent 

measurement uncertainties of in situ field data (Laws and Archie, 1981). While values of 

r and S that are close to one generally indicate better agreement between model 

estimates and in situ observations, r and S alone provide no information on the accuracy 

or bias of a given model, and thus are not viewed in isolation from the MAD and d when 

assessing model performance. Statistical calculations involving total or size-specific [Chl-

a], aph(l), or adg(l) were performed in log10 space, while calculations involving size 

fractions were performed in linear space. 

2.6 Estimation of PSCs from HPLC pigments 

For algorithm re-parameterization and validation, PSCs were estimated from the 

pigment data using the Diagnostic Pigment Analysis (DPA) method (Brewin et al., 2015a; 

Claustre, 2005; Devred et al., 2011; Uitz et al., 2006; Vidussi et al., 2001). This method 

has been used extensively for PSC algorithm development and validation given the 
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relative abundance of HPLC pigment measurements compared with other in situ PSC 

methods. The DPA approach involves first re-constructing the measured [Chl-a] (denoted 

here as CHPLC) from the weighted sum of seven biomarker pigments (denoted CDP) 

according to: 

�67 = ∑+9.'�+ �+, (3) 

where [W] represents pigment-specific weighting coefficients and [P] is the set of seven 

biomarker pigments: {fucoxanthin ([Fuco]), peridinin ([Perid]), 19’-

hexanoyloxyfucoxanthin ([Hex-fuco]), 19’-butanoyloxyfucoxanthin ([But-fuco]), 

alloxanthin ([Allo]), total chlorophyll-b ([TChl-b]), zeaxanthin ([Zea])}. To derive an optimal 

set of weighting coefficients from the NES pigment data set, a multi-linear regression of 

[P] on CHPLC was performed. The newly computed weighting coefficients compared 

reasonably with those obtained from previous studies (Table 3), with the exception of 

large differences observed for the weights attributed to [But-fuco] and [Allo], which may 

be due to differences in community composition in the NES compared with the global 

ocean. The new weights yielded close agreement between CDP and CHPLC (MAD = 0.12, 

r = 0.98), and demonstrated better results relative to using the unweighted sum of the 

diagnostic pigments (Vidussi et al., 2001), or the commonly applied weights of Uitz et al. 

(2006), which were derived from a large global pigment database (Fig. 3, Table 3). 
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Figure 3 Comparison of the HPLC-measured [Chl-a] (CHPLC) and the reconstructed [Chl-a] from the sum of seven 
diagnostic pigments (CDP) using the weighting coefficients derived from this study (green circles; MAD = 0.12, r = 0.98), 
the weights derived by Uitz et al. (2006) from a global data set (blue triangles; MAD = 0.47, r = 0.96), and no weighting 
coefficients (magenta squares; MAD = 0.62, r = 0.96). 

The fractional contributions of micro-, nano-, and picoplankton were estimated 

from the ratios of the diagnostic pigments attributed to each size class to CDP. Two  

Table 3. Diagnostic pigments [P] and their associated taxonomic groups and attributed 

size classes, along with weighting coefficients [W] obtained from this study and previous 

studies. The number of data points and geographical regions of each study are also 

provided. 

Pigment [P] 
Primary 
taxonomic 
group(s) 

Attributed 
size 
class(es) 

Weights [W] 
Uitz et This al. study (2006) 

Brewin 
et al. 
(2015a) 

Brewin 
et al. 
(2017) 

Fucoxanthin 
(P1) Diatoms Micro/nano 2.20 1.41 1.51 1.65 
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19'-But (P4) 
Alloxanthin 
(P5) 

Peridinin (P2) Dinoflagellates Micro 1.08 1.41 1.35 1.04 
19'-Hex (P3) Prymnesiophytes Nano 0.86 1.27 0.95 0.78 

Pelagophytes Nano 3.63 0.35 0.85 1.19 

Cryptophytes Nano -0.10 0.60 2.71 3.14 

Total Prochlorophytes, chlorophyll-b Pico 1.21 1.01 1.27 1.38 Chlorophytes 

Zeaxanthin 
(P7) 

Prochlorophytes, 
Cyanobacteria 

(P6) 

Pico 0.99 0.86 0.93 1.02 

Number of 786 2419 5841 2239data points 
Geographic North NES Global Global region Atlantic 

diagnostic pigments were attributed to microplankton: [Fuco] and [Perid], associated with 

diatoms and dinoflagellates, respectively. Acknowledging that [Fuco] is also present in 

prymnesiophytes and chrysophytes, and that diatoms can also occupy the nano size 

range, Devred et al. (2011) introduced a modification that attributes a portion of [Fuco] 

(P1) to nanoplankton, such that � = �',<=<> + �',@+AB>. In their approach, P1,nano is' 

estimated from the equation: 

�',<=<> = 10[EFG>HFI(7J)KELG>HFI(7M)], (4) 

where P3 and P4 are the pigments [Hex-fuco] and [But-fuco], respectively, and q1 and q2 

are the coefficients of a 1% multi-linear quantile regression of P1 on P3 and P4. Following 

the same approach, The coefficients q1 and q2 were re-computed for the NES pigment 

dataset, obtaining values of q1 = 0.999 and q2 = 0.271, and P1,nano was estimated using 

Eq. (4). In any instance where the estimated P1,nano was found to be greater than P1, it 

was set equal to P1. The fraction of microplankton (Fmicro) was then calculated according 

to: 
20 



  

																																																			 																																																									  

       

        

            

         

       

            

             

             

        

																																																				 	 																																																								  

          

         

            

        

																																																														 																																																																								  

         

             

    

																																																									 																																																																					  

																																																											 																																																																						  

∑+Q.' �+ �+ − �'�',<=<> �@+AB> = . (5)�67 

Three diagnostic pigments were used to estimate nanoplankton: [Hex-fuco], [But-

fuco], and [Allo], attributed to prymnesiophytes, pelagophytes, and cryptophytes, 

respectively (Brewin et al., 2015a; Roy, 2011; Uitz et al., 2006). Brewin et al. (2010) 

proposed a linear adjustment that attributes a portion of [Hex-fuco] to picoeukaryotes 

(picoplankton) in ultra-oligotrophic environments ([Chl-a] < 0.08 mg m-3). However, 

considering that only one sample in the data set used in this study met this criterion ([Chl-

a] = 0.07 mg m-3) and the adjustment was found to make only minor difference (not 

shown), it was excluded for simplicity. Incorporating the [Fuco] modification of Devred et 

al. (2011), the fraction of nanoplankton was calculated as: 

T∑+.U �+ �+ + �'�',<=<> �<=<> = . (6)�67 

The final two diagnostic pigments: [TChl-b] and [Zea], were attributed to the 

picoplankton class, the former associated with prochlorophytes and chlorophytes and the 

latter with prochlorophytes and cyanobacteria (Chisholm et al., 1988; Roy, 2011; Uitz et 

al., 2006). The fraction of picoplankton (Fpico) was computed as: 

∑+9.X �+ �+�W+A> = . (7)�67 

Once Fmicro, Fnano, and Fpico (collectively referred to as Fsize) were determined, the [Chl-a] 

specific to each size class (collectively referred to as Csize) was calculated by multiplying 

Fsize by CHPLC, such that: 

�@+AB> = �@+AB>�Z7[\ , (8�) 

�<=<> = �<=<>�Z7[\ , (8�) 

21 



  

                                                																																																																							  

  

        

       

          

             

         

             

           

       

         

         

       

             

    

  

     

           

          

          

																																						 																										  

�W+A> = �W+A>�Z7[\ . (8�) 

2.7 PSC algorithms 

A variety of PSC algorithms, including purely abundance-based methods, 

abundance-based methods that include SST, and absorption-based approaches, were 

selected for optimization and/or evaluation in this study. The abundance-based models 

chosen are among the most commonly applied in the literature and have been 

successfully re-parameterized for studies in diverse ocean regions, including continental 

shelf systems (Brito et al., 2015; Sun et al., 2018). The absorption-based models were 

chosen based on their global performance metrics (Mouw et al., 2017b) and their 

demonstrated consistency in capturing multiple phytoplankton phenology metrics in the 

North Atlantic (Kostadinov et al., 2017). The following sections provide brief overviews of 

each model, including their principal frameworks, methods used for model 

development/parameterization, and key differences. For more comprehensive 

information, the reader is referred to the original publications and the reviews of Mouw et 

al. (2017b) and IOCCG (2014). 

2.7.1 Abundance-based 

2.7.1.1 Brewin et al. (2010, 2015a) 

The three-component model of Brewin et al. (2010) relates the fractional 

contribution of combined pico- and nanoplankton (Fpico,nano) and picoplankton (Fpico) to 

[Chl-a] using two exponential functions (Sathyendranath et al., 2001) according to: 

@ a1 − ��� e− 
�W+A>,<=<> �W+A>,<=<> @ [�ℎ�-�]hi�W+A>,<=<> �W+A>,<=<> = , (9)[�ℎ�-�] 

22 



  

																																																			 																																					  

       

              

          

          

      	 	 	 	 	 	

	 	 	             

        

             

             

            

               

              

              

            

        

    

     

                

               

              

               

@�W+A> a1 − ��� e− 
�W+A> [�ℎ�-�]hi@�W+A> �W+A> = , (10)[�ℎ�-�] 

where the model parameters Cmpico,nano and Cmpico represent asymptotic maximum [Chl-

a] for the associated size classes, and Dpico,nano and Dpico represent the fraction of each 

size class as [Chl-a] tends toward zero. The model parameters are derived by fitting Eqs. 

9 and 10 to an in situ data set of Fpico,nano, Fpico, and [Chl-a] via nonlinear least squares 

regression. Fmicro and Fnano are then determined as �@+AB> = 1 − �W+A>,<=<> and �<=<> = 

�W+A>,<=<> − �W+A>, respectively. Brewin et al. (2010) used a data set of HPLC pigments 

from the Atlantic Ocean (N = 1935) (Atlantic Meridional Transect cruises 5-15) and 

estimated PSCs using DPA to derive model parameters. Brewin et al. (2015a) utilized a 

much larger global data set of HPLC measurements (N = 5841) to compute the model 

parameters. These two models are denoted B10 and B15 throughout the remainder of 

the text. For simplicity, the notation B10 is also used to refer to the general framework 

that underlies both models (i.e., Eqs. 9 and 10), in addition to the parameterization specific 

to that study. Further, while Brewin et al. (2015a) also investigated the influence of 

average irradiance in the mixed layer on model parameters, in this study B15 refers to 

the model without this modification. Parameter values obtained from various studies are 

provided in Table 4. 

2.7.1.2 Brewin et al. (2017) 

Brewin et al. (2017) used a merged in situ HPLC/SFF data set from the North 

Atlantic (N = 2239) to compute the parameters of the B10 model (Eqs. 9 and 10). They 

then modified the model parameters to vary as a function of SST by matching the in situ 

PSC data with satellite-derived SST and conducting a running fit of the model to the data 

23 



  

         

       

   

																																													 	 	 	 	 	 																							  

																																																		 	 	 	 	 	 																										  

																																																				 	 	 	 	 	 																															  

																																																							 	 	 	 	 	 																																	  

            

                

              

             

           

      

   

               

            

          

           

             

           

          

binned by increasing SST. They represented the resulting relationships between SST and 

model parameters using logistic functions, such that Cmpico,nano, Cmpico, Dpico,nano and Dpico 

are expressed as: 

@�W+A>,<=<> = 1 − { (11)1 + exp [−�
�
Q

'
(��� − �U)] 

+ �r} , 

@�W+A> = 1 − { (12)1 + exp [−�
�
Q

'
(��� − �U)] 

+ �r} , 

=�W+A>,<=<> 1 + exp [−�
�
Q

'
(��� − �U)] 

+ �r , (13) 

�W+A> = (14)1 + exp [−�
�
Q

'
(��� − �U)] 

+ �r , 

where Gi, Hi, Ji, and Ki (where i = 1-4) are empirical parameters controlling the shape of 

the respective logistic curve and are provided in Table 4 of Brewin et al. (2017). In the 

remainder of this text, the notation B17 is used to refer to the SST-independent 

parameterization of the model, which uses a single set of model parameters derived from 

their full data set (Table 4). The SST-dependent parameterization, which uses Equations 

11-14 with the published coefficients, is denoted as B17-SST. 

2.7.1.3 Devred et al. (2011) 

The model of Devred et al. (2011) (denoted D11) is based on the same exponential 

functions as the B10 model (Eqs. 9 and 10). The primary difference is that the model 

parameters Cmpico,nano and Cmpico were not derived from HPLC pigment-based size 

classes, but rather by successive application of the two-population absorption model of 

Devred et al. (2006) to aph(l) and [Chl-a] data from the Northwest Atlantic and NASA’s 

NOMAD data set. While the model was originally applied as a spectral-based approach, 

in this study it is implemented as an abundance-based method, using the parameters 
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provided in Table 2 of Brewin et al. (2015a). In a comparison of nine existing PSC 

algorithms in the Northwest Atlantic region near Newfoundland, Liu et al. (2018) found 

the application of this model as an abundance-based method to be the most successful 

(Model E in their study). The reader is referred to Chapter 4 of IOCCG (2014) for more 

information on this approach. 

2.7.1.4 Hirata et al. (2011) 

The empirical model of Hirata et al. (2011) (denoted H11) estimates the fractional 

contribution of pico- and microplankton to [Chl-a] according to: 

�W+A> = −[�' + ���(�Q� + �U)]x' + �r� + �T , (15) 

�@+AB> = [�' + ���(�Q� + �U)]x' , (16) 

where ai and bi (where i = 1-5 and i = 1-3, respectively) are empirical coefficients specific 

to each size class and X is log10-transformed [Chl-a]. Fnano is then calculated by 

difference (1 − �@+AB> − �W+A>). The H11 model was developed using PSCs derived from 

a global HPLC data set (N = 2776) following a unique version of DPA that attributes [TChl-

b] to nanoplankton rather than picoplankton, as in Brewin et al. (2010, 2015a, 2017) and 

the present study (see Section 2.6). 

2.7.1.5 Moore and Brown (2020) 

The model of Moore and Brown (2020) utilizes the H11 microplankton model (Eq. 

16) to estimate both Fpico and Fmicro. Using a data set of surface HPLC pigments from the 

Atlantic Ocean (N = 1083), they developed two separate models: one parameterized 

using the DPA method (following the procedure of Brewin et al. (2015a)) and one 

parameterized using CHEMTAX (Mackey et al., 1996). They then incorporated different 

remotely sensed environmental variables into the models, following a similar approach to 
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that of Brewin et al. (2015a, 2017), and created a look-up table (LUT) for each model 

parameter indexed by the environmental data. Of the environmental variables tested, they 

found that the inclusion of SST resulted in the largest reduction of model error. In this 

study, the DPA version of the model was applied, both with and without the incorporation 

of SST. The SST-independent model (denoted MB20) was applied using Eq. (16) with 

the coefficients provided in Table 4 of Moore and Brown (2020). The SST-dependent 

model (denoted MB20-SST) was applied using the set of parameters from their LUT 

indexed by SST (obtained from Timothy Moore via personal communication). 

2.7.1.6 Re-parameterized B10 and H11 models 

We derived new model parameters for the B10 and H11 models using the pigment-

based estimates of Fsize from the NES parameterization data set (Table 3). To re-

parameterize the B10 model, Eqs. (9) and (10) were fit to Fpico,nano, Fpico, and CHPLC using 

a standard nonlinear least squares curve fitting method (MATLAB function lsqcurvefit.m, 

Levenberg-Marquardt algorithm) (Brewin et al., 2017; Brewin et al., 2015a). We followed 

the same procedure for the H11 model, however with a slight modification. Considering 

the findings of Moore and Brown (2020), who showed better results when using the H11 

microplankton formula (Eq. 16) for estimating both Fmicro and Fpico, we tested the fit of both 

Eq. (15) and Eq. (16) to our data set of Fpico and CHPLC. We likewise found improved fit 

statistics when using Eq. (16) to estimate Fpico (not shown). Therefore, we fit Eq. (16) to 

both Fmicro and Fpico and CHPLC to derive new model parameters. We refer to these two 

regionally re-parameterized abundance-based models as B-NES and H-NES, 

respectively. 
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Table 4. Parameter values for the abundance-based models of Brewin et al. (2010) (Eqs. 

9 and 10) and Hirata et al. (2011) (Eq. 16), obtained from this study and from previous 

studies. 

Geographic Parameters for Equations (9) and (10) 
Study Years region Cmpico,nano Cmpico Dpico,nano Dpico 

Atlantic 1997-2004 - 1.06 0.11 0.9 0.73 -Brewin et al. 
(2010) 
Brewin et al. Global 1992-2012 - 0.77 0.13 0.94 0.91 -(2015a) 
Brewin et al. N Atlantic 1995-2015 - 0.82 0.13 0.87 0.73 -(2017) 
Devred et al. NW 1996-2003 - 0.55 0.15 1.00 1.00 -

This study 
(2011) Atlantic 

NES 2003-2018 - 0.81 0.15 0.78 0.54 -
Parameters for Equation (16) 
b1,micro b2,micro b3,micro b1,pico b2,pico b3,pico 

Moore and 

Global 1995-2008 0.91 -2.73 0.40 - - -

Brown Atlantic 1997-2014 0.82 -1.33 0.39 1.41 2.62 1.72 
(2020) 
This study NES 2003-2018 1.03 -1.68 -0.12 -3.45 0.67 2.29 

Hirata et al. 
(2011) 

2.7.1.7 Regional SST-modified B10 model 

Following a similar methodology to recent studies (Brewin et al., 2019, 2017; 

Moore and Brown, 2020; Sun et al., 2019), we investigated the influence of SST on 
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Figure 4 Brewin et al. (2010) model parameters (a) Cmpico,nano/Cmpico, and (b) Dpico,nano/Dpico as a function of SST. Circle 
markers show the median parameter values obtained by performing a running bootstrap fit of the model (Eqs. 9 and 
10) to the in situ parameterization data set (N = 418) sorted by increasing SST. The SST-parameter relationships were 
smoothed using a 5-point running average. Dashed lines indicate the SST-independent model (B-NES) parameters 
obtained when fitting the model to the full parameterization data set. 

the parameters of the B10 model. This was done by sorting the pigment-based estimates 

of Fpico and Fpico,nano from the parameterization data set by increasing SST and conducting 

a running fit of the model from low to high SST, using a bin size of 125 

samples. Starting at the lowest temperature, the bin was moved at one-sample intervals, 

and at each interval Eqs. (9) and (10) were fit to the data within the bin using the same 

the same approach as described in the previous section. From each fit, the median values 

of the model parameters Cmsize and Dsize, along with the average SST of the binned data, 
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were incorporated into a LUT. Finally, the LUT relationships were smoothed using a 5-

point running mean (Fig. 4). We chose a LUT approach as opposed to fitting logistic 

functions to represent the SST-parameter relationships in order to capture variability in 

the relationships that may be ecological meaningful and would otherwise be smoothed 

out by a logistic curve. The LUT included 293 unique sets of model parameters covering 

a range of SST of 6.8 – 21.4 ºC at intervals of approximately 0.06 ºC. Application of the 

LUT enables a dynamic set of model parameters to be derived based on remotely sensed 

SST. We refer to this SST-dependent re-parameterization as B-NES-SST henceforth. 

2.7.2 Absorption-based 

2.7.2.1 Ciotti et al. (2002) 

The model of Ciotti et al. (2002) (denoted C02) estimates the fractional contribution 

of picoplankton (Fpico), by weighting aph*(l) between two basis spectra representing "pure" 

micro- and picoplankton. The basis spectra were determined by lab measurements of 

aph(l) of 16 natural phytoplankton communities of varying dominant cell sizes, and are 

provided in Ciotti et al. (2002) with an updated picoplankton spectra provided by Ciotti 

and Bricaud (2006). The model can be expressed as: 

∗ ∗ ∗�Wy(�) = {�W+A> ∗ �|W+A> (�)} + {~1 − �W+A>� ∗ �|@+AB>(�)}, (17) 

where ā* pico(l) and ā* micro(l) represent the basis spectra of pico- and microplankton, 

respectively. Fpico was estimated from Eq. (17) by performing a linear least squares 

optimization (MATLAB function lsqlin.m), using satellite-derived aph*(l) (calculated by 

dividing the satellite aph(l) by the satellite [Chl-a]) and the published basis spectra at four 

wavelengths (443, 490, 510, and 555 nm). These four wavelengths were used due to the 

poor retrieval of aph(670) (see Section 3.1) and better statistical performance when 
29 



  

       	 	      

       

   

             

            

         

          

              

          

	 	           

        

              

             

    

     

         

               

        

             

             

          

          

              

excluding 412 nm. The inverse of Fpico (1 − �W+A>) was considered equivalent to the 

combined fraction of micro- and nanoplankton (Fmicro,nano). 

2.7.2.2 Mouw and Yoder (2010) 

The algorithm of Mouw and Yoder (2010) (denoted MY10) employs an optical LUT 

containing ranges of Fmicro (binned to increments of 0.1), [Chl-a], and adg(443), from which 

Rrs(l) was calculated using the radiative transfer software HydroLight (Mobley and 

Sundman, 2013). The model uses satellite [Chl-a] and adg(443) as inputs to first narrow 

the search space of the LUT, then the closest matching LUT Rrs(443) to the satellite-

derived Rrs(443) is found to retrieve the corresponding Fmicro. Fpico,nano is then calculated 

as 1 − �@+AB>. Based on determined thresholds for the detectability of cell size from 

SeaWiFS Rrs(l) (Mouw and Yoder, 2010), the algorithm masks pixels with [Chl-a] < 0.05 

mg m-3, [Chl-a] > 1.75 mg m-3, or adg(443) > 0.17. Additionally, when applied to a satellite 

image, a 2D-averaging filter (MATLAB function filter2.m) with a 3x3 pixel size is applied 

in the algorithm routine. 

2.8 Model assessment and imagery application 

PSC algorithm performance was assessed statistically (see Section 2.5) as 

follows. First, using the in situ [Chl-a] data as input, estimates of Fsize and Csize from the 

SST-independent abundance-based models (B10, B15, B17, D11, H11, MB20, B-NES, 

and H-NES) were compared with the in situ pigment-based estimates of Fsize and Csize for 

both the parameterization and validation data sets. Then, using the in situ [Chl-a] and 

matching satellite SST as input, estimates of Fsize and Csize from the SST-dependent 

models (B17-SST, MB20-SST, B-NES-SST) were also compared with the in situ Fsize and 

Csize from both the parameterization and validation data sets, and the influence of SST on 
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model performance relative to the SST-independent models was quantified. Lastly, using 

the satellite products as input, independent satellite validation of Csize was conducted for 

the regionally re-parameterized abundance-based models (B-NES-SST, B-NES, and H-

NES) and the absorption-based algorithms (C02 and MY10). 

To illustrate the application of the models to ocean color imagery and explore 

spatial-seasonal variations of PSCs in the NES region, the best performing abundance-

based and absorption-based models were applied to monthly imagery composites for 

April 2019 and September 2019, and qualitatively compared. 

3. Results 

3.1 Satellite validation of [Chl-a], aph(l) and adg(l) 

As the performance of PSC algorithms is largely dependent on the quality of the 

satellite products used as inputs, the satellite retrievals of [Chl-a], aph(l) and adg(l) in the 

NES were first validated with the available in situ observations. Of the two [Chl-a] 

algorithms assessed, the standard OC-CCI algorithm (Fig. 5a) displayed lower difference 

and bias (MAD = 0.21, d = -0.03) than the regional empirical algorithm of Pan et al. (2010) 

(MAD = 0.27, d = -0.20; Fig. 5b) when compared with the in situ HPLC [Chl-a]. The OC-

CCI algorithm was associated with overestimation at low [Chl-a] and underestimation at 

high [Chl-a] (>0.6 mg m-3). This is a relatively common feature of [Chl-a] estimated from 

empirical band-ratio algorithms (e.g., OCx), that can be attributed primarily to the impact 

of phytoplankton cell size and underlying variability in the concentrations of CDOM and 

inorganic particulates (Dierssen, 2010; Mouw et al., 2012; Sauer et al., 2012). In contrast, 

the algorithm of Pan et al. (2010) exhibited a systematic underestimation across the entire 
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[Chl-a] range (d = -0.20). This difference is reflected in a lower Type-II regression slope 

for the OC-CCI algorithm (S = 0.66) compared with a slope closer to one for the Pan et 

al. (2010) algorithm (S = 0.89). The two algorithms displayed similar correlation 

coefficients (r = 0.75 and 0.74 respectively). The performance of the OC-CCI algorithm 

was comparable to the global [Chl-a] validation of OC-CCI v4.2 as shown in the Product 

User Guide (RMSD = 0.32, d = 0.07, r = 0.75, S = 0.72; see their Fig. 5). Considering the 

lower difference and bias of the OC-CCI product, [Chl-a] from this algorithm was used as 

the satellite input to the PSC models in this study. 

The standard OC-CCI estimates of aph(l) and adg(l), derived using QAA_v5, 

compared reasonably with in situ measurements, with most points falling within the ± 30% 

uncertainty range at the wavelengths 443, 490, and 510 nm (Fig. 5 c-h). The lowest 

differences for aph(l) were observed at 490 and 510 nm (MAD = 0.22 and 0.24, 

respectively), with retrievals of aph(443) exhibiting slightly higher uncertainty (MAD = 

0.28). For adg(l), the best performance was observed at 443 nm (MAD = 0.17, d = -0.14). 

There was a consistent negative bias in the retrieved adg(l) which became more negative 

at longer wavelengths, corresponding with an increasingly positive bias for aph(l). 

Retrievals of aph(555) and aph(670) were associated with larger errors (MAE = 0.32 and 

0.62, respectively), the same being true for adg(555) and adg(670) (MAE = 0.38 and 0.41, 

respectively). The decrease in performance at longer wavelengths for QAA_v5 is 

consistent with results from the global inter-comparison of bio-optical algorithms 

conducted by Brewin et al. (2015b) (Model E in their study). Considering the reasonable 

performance of the standard OC-CCI aph(l) and adg(443) products (443 nm is the only 
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wavelength required for adg(l) as input into the MY10 algorithm), no regional optimization 

of the absorption retrievals was attempted in this study. 
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Figure 5 Bivariate histograms showing the satellite-to-in situ comparisons of [Chl-a], aph(l), and adg(l), shaded by 
number of observations: (a) [Chl-a] from the standard OC-CCI algorithm, (b) [Chl-a] from the regional algorithm of Pan 
et al. (2010), (c) aph(443), (d) aph(490), (e) aph(510), (f) adg(443), (g) adg(490), and (h) adg(510) from the standard OC-
CCI algorithm (QAA_v5). The solid black line is the 1:1 line, dashed black lines indicate the 1:1 line ± 30%, and the red 
line is the Type-II regression line. N denotes the number of match-ups, MAD denotes the mean absolute difference, d 
denotes the bias, r denotes the correlation coefficient, and S denotes the regression slope. The aph(l) and adg(l) data 
are shown using the same x- and y-axis range for comparison. 
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3.2 Comparison of SST-independent abundance-based models 

Figure 6 shows the in situ pigment-based estimates of Fsize and Csize from the 

parameterization data set (N = 418) with the SST-independent abundance-based models 

overlain. Fsize and Csize exhibited trends with CHPLC that are consistent with established 

relationships of phytoplankton size structure and total biomass (Brewin et al., 2010; Hirata 

et al., 2011; Uitz et al., 2006). Fmicro generally increased, while Fpico,nano, and Fpico generally 

decreased with increasing CHPLC. Fnano displayed a unimodal relationship CHPLC, peaking 

at intermediate CHPLC. Cmicro increased in near log-linear fashion with CHPLC, becoming 

more tightly correlated at higher CHPLC, when microplankton are the dominant size class. 

Cpico,nano, Cnano, and Cpico, also displayed an overall positive relationship with CHPLC, with 

greater variability at higher CHPLC. The abundance-based models all followed to first order 

these general trends, with some variations that can be attributed to differences in the 

model frameworks, data sets, and approaches used for model 

development/parameterization. For example, the B10 model parameters Cmpico,nano and 

Cmpico impose asymptotic maximum values for Cpico,nano and Cpico respectively, while the 

purely empirical H11 model does not define any strict maximums. This can be seen when 

comparing Cpico predicted by the H-NES model, which increases continuously with CHPLC, 

with that of the B-NES model, which levels off at the imposed maximum concentration 

(Cmpico = 0.2 mg m-3) (Fig. 6h). The H11-modeled Fpico is based on a different empirical 

function (Eq. 15) than the one used in this study (see Section 2.7.1.6), and goes to zero 

at CHPLC > 4 mg m-3 (Fig. 6d), accounting for the breakdown in this model at higher CHPLC 

for Cpico, Cnano, and Cpico,nano (Fig. 6f-h). Compared with the other models, the B-NES 
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model predicted a slightly higher Fmicro and lower Fpico,nano and Fpico at low CHPLC (Fig. 

6a,b,d). 
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Figure 6 Pigment-based estimates of Fsize (a-d) and Csize (e-h) as a function of CHPLC from the parameterization data 
set (N = 418) with abundance-based models overlaid: re-parameterized B10 model (B-NES, solid black), re-
parameterized H11 model (H-NES, dashed black), Brewin et al., 2010 (B10, blue), Brewin et al., 2015a (B15, green), 
Brewin et al., 2017 (B17, red), Devred et al., 2011 (D11, violet), Hirata et al., 2011 (H11, brown), and Moore and Brown, 
2020 (MB20, yellow). 

Furthermore, the B-NES-modeled Fnano leveled off at low CHPLC rather than decreasing as 

with the other models (Fig. 6c). Despite the variability between the different models, the 

range of variability in the pigment-based estimates of Fsize and Csize was generally greater 

across the entire trophic domain. Statistical comparison between the in situ and modeled 

Fsize and Csize for both the parameterization and validation data sets yielded very similar 

metrics between models (Appendix A). Overall, minimal improvement in performance was 

observed for the regionally re-parameterized models (B-NES and H-NES) compared with 

the other models examined, although there was a reduction in error and bias for the 

nanoplankton size class compared with the original global models (B10 and H11).  
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3.3 Regional SST-dependent model (B-NES-SST) 

Figure 7 shows the modeled Fsize and Csize from the B-NES-SST model as a 

function of [Chl-a] at varying SST along with the SST-independent (B-NES) model for 

reference. SST had a clear influence on the predicted Fsize and Csize for all of the size 

classes. Lower SST was associated with a higher fraction of microplankton, and a lower 

fraction of nanoplankton and picoplankton (Fig. 7a-d), consistent with the results of 

previous studies (Brewin et al., 2017b; Moore and Brown, 2020; Sun et al., 2019b). This 

relationship was generally observed across the entire [Chl-a] domain but was more 

pronounced at lower [Chl-a]. Fnano increased with SST for [Chl-a] > 1 mg m-3, whereas for 

[Chl-a] < 1 mg m-3, Fnano increased with SST only up to ~18 ºC, beyond which there was 

a decrease in Fnano corresponding with an increase in Fpico at SST > 18 ºC. The largest 

variability in modeled Cmicro with SST was at [Chl-a] < 1 mg m-3, whereas the largest 

variability in modeled Cpico,nano, Cnano, and Cpico with SST was at [Chl-a] > 1 mg m-3 (Fig. 

7e-h). 

Results from the statistical comparison of modeled Fsize and Csize from the B-NES-

SST, B17-SST, and MB20-SST models with the in situ pigment-based estimates of Fsize 

and Csize are presented in Table 5. For both the parameterization and validation data sets, 

the B-NES-SST model performed with lower error and significantly higher correlation 

coefficients than the other two SST-dependent models across all size classes. There was 

also a consistent improvement in performance (i.e., reduction in error, increase in 

correlation coefficient) for the B-NES-SST model relative to the SST-independent B-NES 

model for both data sets. Considering the statistical results from the validation set, the 

inclusion of SST led to a reduction in MAD of 10-12% for Fsize and 4-10% for Csize, with 
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the largest reductions for Fnano and Cpico,nano, respectively. Likewise, the inclusion of SST 

increased the correlation coefficient (r) for Fsize and Csize, with the largest increases for 

Fnano and Cpico, respectively. Interestingly, the B17-SST model exhibited slightly worse 

performance relative to the SST-independent B17 model for estimating Fmicro, Fpico,nano, 

and Cpico,nano, with essentially no change for Cmicro. The MB20-SST model displayed 

general improvement over the MB20 model. 
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Figure 7 Modeled Fsize (a-d) and Csize (e-h) from the B-NES-SST model plotted as a function of [Chl-a], with the color 
gradient illustrating the changes in the model when model parameters vary as a function of SST (see Section 2.7.1.7, 
Fig. 4). The black line indicates the SST-independent model, with a single set of model parameters (B-NES).
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Table 5. Mean absolute difference (MAD) and correlation coefficients (r) for Fsize and Csize 

(values for Csize shown in parentheses) for the SST-dependent abundance-based models 

applied to the in situ parameterization and validation data sets. The percent change in the 

metrics when incorporating SST relative to the SST-independent models is included for 

reference. Percentages are rounded to the nearest 1%. 

in situ parameterization set (N = 418) in situ validation set (N = 368) 

Parameter Model 
MAD % change 

with SST r % change 
with SST MAD % change 

with SST r % change 
with SST 

B-NES-SST 0.16 (0.21) -11 (-13) 0.68 (0.89) +21 (+3) 0.17 (0.24) -11 (-4) 0.58 (0.87) +32 (+2) 

Fmicro (Cmicro) B17-SST 0.19 (0.23) +6 (-4) 0.54 (0.87) -4 (+1) 0.20 (0.25) +5 (0) 0.44 (0.85) 0 (0) 

MB20-SST 0.18 (0.23) -5 (-4) 0.59 (0.83) +7 (-3) 0.19 (0.24) -5 (-4) 0.49 (0.86) +9 (+1) 

B-NES-SST 0.16 (0.17) -11 (-11) 0.68 (0.75) +21 (+12) 0.17 (0.18) -11 (-10) 0.58 (0.77) +32 (+6) 
Fpico,nano 

(Cpico,nano) B17-SST 0.19 (0.20) +5 (+5) 0.54 (0.59) -4 (-11) 0.20 (0.20) +5 (0) 0.44 (0.72) 0 (+1) 

MB20-SST 0.18 (0.20) -5 (0) 0.59 (0.56) +7 (-16) 0.19 (0.19) -5 (-5) 0.49 (0.73) +9 (0) 

B-NES-SST 0.13 (0.21) -13 (-13) 0.55 (0.74) +49 (+12) 0.15 (0.26) -12 (-7) 0.39 (0.79) +225 (+6) 

Fnano (Cnano) B17-SST 0.14 (0.24) -7 (-4) 0.44 (0.66) +19 (0) 0.16 (0.27) -6 (-4) 0.29 (0.75) +45 (+1) 

MB20-SST 0.16 (0.26) -6 (-4) 0.28 (0.58) +8 (-13) 0.16 (0.27) -11 (-7) 0.18 (0.72) 0 (-3) 

B-NES-SST 0.07 (0.19) -13 (-10) 0.70 (0.64) +15 (+16) 0.09 (0.20) -10 (-9) 0.73 (0.62) +16 (+15) 

Fpico (Cpico) B17-SST 0.08 (0.23) 0 (-4) 0.63 (0.46) 0 (+7) 0.09 (0.23) -10 (-4) 0.73 (0.53) +4 (+23) 

MB20-SST 0.08 (0.21) 0 (-13) 0.67 (0.53) +6 (+56) 0.10 (0.22) 0 (-8) 0.72 (0.52) +3 (+37) 

3.4 Satellite validation of Csize 

Using the satellite-derived data as input, estimates of Csize from the regional 

abundance-based (B-NES-SST, B-NES, and H-NES) and absorption-based algorithms 

(C02 and MY10) were compared with the in situ pigment-based Csize from the 

independent validation data set. The B-NES-SST, B-NES, and H-NES models displayed 

similar statistical performance (Fig. 8), although the SST-dependent model performed 

considerably better across all statistical metrics for Cmicro (Fig. 8a). The B-NES-SST model 
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generally performed better than the SST-independent B-NES model, and was less 

constrained by static maximums for Cpico,nano, Cnano, and Cpico (Fig. 8 f-h, dashed green 

lines), particularly for Cpico, for which a substantial increase in the correlation coefficient 

was observed, consistent with previous studies (Brewin et al., 2017b; Sun et al., 2019b). 

Like the OC-CCI [Chl-a] input product, the satellite-estimated Csize from these models 

tended to be underestimated at higher concentrations and overestimated at low 

concentrations, especially for Cnano and Cpico <0.1 mg m-3 and 0.05 mg m-3, respectively. 

The C02 and MY10 algorithms performed comparably to the re-parameterized 

abundance-based models (Fig. 9). The MY10 algorithm estimated Cmicro and Cpico,nano with 

similar differences as the B-NES-SST model, but with higher correlation coefficients (r = 

0.74 and 0.63, respectively) and improved regression slopes (S = 0.97 and 0.89, 

respectively), although it is noted that the number of validation points was reduced from 

N = 368 to N = 352 and N = 332 for C02 and MY10, respectively. For the former, this was 

due to 16 match-ups with negative satellite aph(555) retrievals, while for the latter, 36 

match-ups exceeded the [Chl-a] and adg(443) detection thresholds of the MY10 algorithm 

(1.75 mg m-3 and 0.17 m-1, respectively; see Sections 2.7.2.1 and 2.7.2.2). Although the 

overall bias was generally higher for the absorption-based approaches, they did not 

exhibit the same overestimation (underestimation) at low (high) concentrations as seen 

with the abundance-based methods, with the exception of Cmicro,nano estimated by C02 

model (Fig. 9a). 
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Figure 8 Bivariate histograms showing the satellite-to-in situ comparisons of Csize estimated from the regionally 
parameterized B-NES-SST (a-d), B-NES (a-d), and H-NES (i-l) abundance-based models, shaded by number of 
observations. The solid black line is the 1:1 line, dashed black lines indicate the 1:1 line ± 30%, and the red line is the 
Type-II regression line. Dashed green lines indicate the maximum chlorophyll concentrations imposed by the B-NES 
model. N denotes the number of match-ups for each parameter, MAD denotes the mean absolute difference, d denotes 
the bias, r denotes the correlation coefficient, and S denotes the regression slope. 
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Figure 9 Bivariate histograms showing the satellite-to-in situ comparisons of Csize estimated from the absorption-based 
algorithms applied in this study: (a) Cmicro,nano and (b) Cpico from the algorithm of Ciotti et al. (2002) and (c) Cmicro and (d) 
Cpico,nano from the algorithm of Mouw and Yoder (2010). The solid black line is the 1:1 line, dashed black lines indicate 
the 1:1 line ± 30%, and the red line is the Type-II regression line. N denotes the number of match-ups, MAD denotes 
the mean absolute difference, d denotes the bias, r denotes the correlation coefficient, and S denotes the regression 
slope. 

3.5 Examples of satellite imagery 

Considering the overall improved performance of the B-NES-SST algorithm 

compared with the other abundance-based models, and the statistically similar 

comparison metrics of the MY10 absorption-based approach, monthly composite imagery 

from these algorithms was generated for April 2019 and September 2019 for visualization 
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and spatial-temporal comparison. These months were chosen as they were relatively 

cloud free and displayed contrasting SST and [Chl-a], thus providing some insight into 

the seasonal variability of phytoplankton size structure in the NES. 

Figure 10 shows the monthly imagery of OC-CCI [Chl-a] (Fig. 10a) and MUR SST 

(Fig. 10b), along with the size class fractions (Fmicro, Fnano, Fpico; Fig.10c-e) and size-

specific [Chl-a] (Cmicro, Cnano, Cpico; Fig.10f-h) from the B-NES-SST algorithm for April 

2019. In April, around the time of the typical North Atlantic spring bloom (Friedland et al., 

2016), [Chl-a] exceeding 1 mg m-3 was observed both on the shelf and off-shore, with the 

highest [Chl-a] observed around GB, south of Nova Scotia, and in the near-shore coastal 

waters along the MAB and GoM. SST ranged from <5 ºC in the northern GoM to ~25 ºC 

within the Gulf Stream. Microplankton were dominant in low SST, high [Chl-a] waters in 

the GoM, on GB, along the coast, and within the major estuaries. Nanoplankton were 

most prevalent in the intermediate [Chl-a] and SST waters off-shore. Picoplankton was 

the dominant size class in the oligotrophic, high SST surface waters of the Gulf of Stream. 
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Figure 10 Monthly composite imagery for April 2019: (a) OC-CCI [Chl-a], (b) MUR SST, (c) Fmicro, (d) Fnano, (e) Fpico, (f) 
Cmicro, (g) Cnano, and (h) Cpico from the B-NES-SST model. Color scales for Fsize are adjusted to reflect the range of the 
model for each size class (see Fig. 8). The black line indicates the 400 m isobath to mark the approximate location of 
the shelf break. 

 Figure 11 shows the same as Figure 10 but for September 2019. Compared with 

April, in September areas of [Chl-a] > 1 mg m-3 did not extend as far off-shore but were 

mainly confined to near-shore regions of the MAB, the GoM, and GB. There was a strong 

gradient in [Chl-a] from the highly productive waters along the coast and to the north to 

the oligotrophic ([Chl-a] < 0.1 mg m-3) off-shore waters to the south. SST  
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Figure 11 Monthly composite imagery for September 2019: (a) OC-CCI [Chl-a], (b) MUR SST, (c) Fmicro, (d) Fnano, (e) 
Fpico, (f) Cmicro, (g) Cnano, and (h) Cpico from the B-NES-SST model, as per the previous figure. 

exceeded 20 ºC throughout much of the region, with cooler SST observed to the north 

around GB and within the GoM, coinciding with the higher [Chl-a] observed in these areas. 

Microplankton comprised a smaller fraction of [Chl-a] in both near-shore and off-shore 

waters in September, with nanoplankton becoming more dominant on the shelf, 

particularly in the central GoM and areas immediately surrounding GB. Likewise, the 

contribution of nanoplankton generally decreased off-shore in September, with 
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picoplankton becoming more dominant in these waters, coinciding with higher SST and 

lower [Chl-a] than was observed in April. 

A comparison of Fmicro imagery from the B-NES-SST and MY10 algorithms for April 

2019 and September 2019 is presented in Figure 12. Considering the Fmicro output from 

the MY10 algorithm is binned to increments of 0.1, the color scale for the B-NES-SST 

imagery was adjusted to match the scale of the MY10 imagery to facilitate a more visually 

equitable comparison. The two approaches displayed similarities and differences in the 

spatial patterns and extent of estimated Fmicro. For example, both models indicated higher 

Fmicro on GB and in the northern GoM than the surrounding region in September, while in 

April both models show areas of elevated Fmicro extending farther offshore, beyond the 

shelf break. Pixels exceeding the MY10 thresholds of detection ([Chl-a] > 1.75 mg m-3 

and adg(443) > 0.17, plotted in white) were located predominantly in shallow regions very 

close to shore and within major embayments, with some masked pixels on GB. While the 

two algorithms showed some similar spatial patterns, there were differences in the 

magnitude of the estimated Fmicro. For instance, the MY10-estimated Fmicro was higher 

around GB and areas in the GoM and the northern MAB than the B-NES-SST model in 

September, and higher within the off-shore feature of elevated [Chl-a] located around 

38ºN, 69ºW in April. The MY10 imagery also generally showed a higher degree of spatial 

variability in Fmicro compared with that of the B-NES-SST model. This is evident within the 

central GoM in April, where the MY10 imagery showed areas of Fmicro spanning the full 

fractional range (i.e., 0-1), whereas the B-NES-SST imagery showed a much more 

uniform distribution of Fmicro, ranging only between 0.5 and 0.7. 
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Figure 12 Comparison of monthly Fmicro imagery from the B-NES-SST and MY10 algorithms for April 2019 (a, b) and 
September 2019 (c, d). The MY10 algorithm applies a 2-D average filter, masks pixels that exceed defined thresholds 
of [Chl-a] and adg(443) (plotted in white), and bins Fmicro to increments of 0.1 (see Section 2.7.2.2). The color scale for 
the B-NES-SST imagery was modified to match the output of the MY10 algorithm. The black line indicates the 400 m 
isobath to mark the approximate location of the shelf break. 

4. Discussion and conclusions

The focus of this study was the regional refinement and evaluation of PSC 

algorithms in the NES. Like many similar studies, in situ estimates of PSCs derived from 

HPLC pigment data using the DPA method were used for model re-parameterization 

and statistical comparisons. While this approach is a popular choice given the relative 

abundance of HPLC samples compared with other methods for quantifying PSCs in 
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situ, it has important limitations. First, DPA is not a direct measure of cell size, but rather 

an approximation of size structure based on assumptions about the taxonomic groups 

attributed to different pigments, and the size classes represented by those taxa. In 

reality, pigments are not perfectly diagnostic, and are known to be shared across 

multiple taxa in varying concentrations dependent on physiological state (Uitz et al., 

2008). Further, taxonomic groups may span multiple size classes in ways that are not 

fully represented by the DPA equations (Leblanc et al., 2018; Nunes et al., 2019). 

Although proposed modifications to account for some of these biases were incorporated 

in this study (Devred et al., 2011), the efficacy of this specific approach for 

characterizing PSCs in the NES region is uncertain and warrants further investigation. 

Recently, Chase et al., (2020) evaluated the DPA method by comparing pigment-based 

PSC estimates to coincident measurements of cell size by imaging-in-flow and 

conventional flow cytometry in the North Atlantic and found that DPA overestimated 

micro- and picoplankton and underestimated nanoplankton relative to cytometry. They 

recommended a revised set of DPA equations to better account for the presence of 

dinoflagellates and diatoms in the nanoplankton, and the presence of [TChl-b] in both 

pico- and nanoplankton. To reduce uncertainty on this front, continued efforts to inter-

compare multiple in situ PSC methods across different oceanic environments will be 

extremely valuable. 

Abundance-based PSC algorithms are attractive for their ease of implementation, 

using satellite [Chl-a] as the sole input parameter, and have been shown to perform well 

globally (Brewin et al., 2011; R. J. W. Brewin et al., 2015) and in a variety of oceanic 

regions (Brito et al., 2015; Di Cicco et al., 2017; Gittings et al., 2019; Sun et al., 2018). 
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Here, previously published abundance-based methods were tested in the NES using both 

original model parameters and new parameters derived from a region-specific HPLC 

pigment data set. Our results indicated that regional re-parameterization alone offered 

minimal statistical improvement compared with other models evaluated, which included 

both globally and regionally parameterized models. All eight of the abundance-based 

models tested yielded similar comparison metrics, particularly for the micro- and 

combined pico- and nanoplankton classes, when applied to the in situ [Chl-a] and 

compared with the DPA-based size class estimates from the independent in situ 

validation data set. There was more variation in the comparison metrics for separated 

nano- and picoplankton classes, but in no instance were the re-parameterized models 

exclusively the best performing, with the exception of the H-NES model for estimating 

picoplankton, which showed slight improvement relative to the other models when applied 

to both the in situ and satellite [Chl-a]. Based on the regional validation conducted in this 

study, the OC-CCI [Chl-a] product was chosen as the satellite input for model application 

and comparison. However, the systematic positive and negative bias of this product at 

low and high [Chl-a] respectively was directly translated to the Csize estimates from the 

regionalized abundance-based methods, underscoring the importance of the satellite 

[Chl-a] input on the accuracy and uncertainty abundance-based PSC output. 

While re-parameterization alone provided little benefit in terms of improving 

abundance-based model performance in the NES, the incorporation of remotely sensed 

SST into the re-parameterization of the B10 model did consistently improve PSC 

prediction accuracy. When applied to the in situ validation data set, the regional SST-

dependent B-NES-SST model showed a reduction in MAD of 10-12% for all size fractions 
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with respect to the SST-independent B-NES model. The B-NES-SST model also 

outperformed the other two SST-dependent models tested (B17-SST and MB20-SST) for 

all size classes. This result supports what has been shown by previous studies (Brewin 

et al., 2017b; Moore and Brown, 2020; Sun et al., 2019b; Ward, 2015) - that the addition 

of SST into abundance-based model frameworks can improve PSC prediction accuracy. 

The relationships between [Chl-a], SST, and phytoplankton size structure observed in this 

study were also in general agreement with the findings of previous studies, with lower 

SST associated with an increase in the fraction of microplankton and a decrease in the 

fraction of smaller cells (i.e. pico- and nanoplankton) at similar [Chl-a]. This relationship 

is not entirely surprising, given long-established connections between temperature, 

water-column stability, nutrient availability, and phytoplankton community size structure 

in the marine environment (Bouman et al., 2003; Margalef, 1978). While SST is used as 

the additional predictor variable in these models, the associated changes in size structure 

are not necessarily in direct response to changes in SST but rather the result of a 

combination of co-varying environmental conditions, including light availability, 

stratification, and nutrient availability. Further in-depth analysis of the interactions 

between environmental, hydrodynamic, and biogeochemical/optical parameters, similar 

to that conducted by Mouw et al. (2019), is required to understand which of these 

variables are the predominant drivers of phytoplankton size variability in the NES region. 

Absorption-based algorithms are advantageous over abundance-based methods 

in that they are rooted in a direct spectral response to phytoplankton cell size, as opposed 

to relying on indirect statistical connections between [Chl-a] and phytoplankton size 

structure. This means that they enable detection of changes in PSCs that occur outside 
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of the general biomass-size co-variation relationship and are less prone to change 

temporally or geographically. When applied directly to the satellite data, the two 

absorption-based algorithms examined in this study performed with comparable accuracy 

to the regionalized abundance-based models. The MY10 algorithm showed statistically 

similar performance to the SST-dependent model, without the inclusion of additional 

environmental information. Considering that pigment-based size class estimates from 

DPA were used for validation, the similarity in performance for the absorption-based 

algorithms is encouraging given they were not developed or parameterized using DPA, 

as was the case with the abundance-based methods. This suggests consistency between 

estimates of PSCs derived from spectral phytoplankton absorption and those determined 

from HPLC pigment analysis in the NES, as has been previously reported in other regions 

(Devred et al., 2011). Moreover, as they are not solely reliant on [Chl-a] for deriving size, 

the satellite-estimated Csize from the absorption-based approaches did not suffer from the 

same bias at high and low [Chl-a] inherent in the OC-CCI [Chl-a]. Nevertheless, as is the 

case with abundance-based approaches, any biases in satellite aph(l) or adg(l) used as 

input will be directly translated to the PSC output. Despite their strengths, the absorption-

based methods were unable to characterize areas where aph(l) retrievals were poor 

(negative aph(555) in the case of the CO2 model) or, in the case of the MY10 model, 

where [Chl-a] and adg(443) were outside of set thresholds. These issues will be more 

prevalent in optically complex waters such as the NES and may be a drawback to the use 

of these algorithms in regions of high biomass or large relative optical contribution of 

CDOM and NAP. 
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While less common than abundance-based and absorption-based methods and 

outside of the focus of this study, approaches that exploit satellite backscattering data to 

derive PSCs have also been developed (Kostadinov et al., 2016, 2009; Montes-Hugo et 

al., 2008). These "backscattering-based" methods share many of the same advantages 

of absorption-based algorithms, as they utilize the direct spectral response of in-water 

constituents and are less reliant on empirical relationships, making them less susceptible 

to ecological shifts in a changing ocean. However, current approaches estimate PSCs 

under the assumption that the particle assemblage is totally biogenic in nature, an 

assumption that generally holds in the open ocean but can be violated in coastal systems 

where inorganic particles are introduced through processes such as river discharge and 

tidal mixing (Kostadinov et al., 2016). Nonetheless, backscattering information provides 

an important tool for remotely estimating the size structure of phytoplankton communities 

and its use in combination with methods based on other optical and environmental data 

has potential to greatly improve PSC retrievals. 

The PSC algorithms and products evaluated in this study may be useful for the 

validation or assimilation of regional ecosystem or biogeochemical models (IOCCG, 

2020). However, given the uncertainties associated with the pigment-based size class 

estimates used for algorithm assessment, as well as the different inputs and outputs 

between methods, it is difficult to make a definitive determination of which approach is 

the best choice for such applications. The most suitable method may be dependent on 

the specifics of the intended application or the questions to be addressed. For instance, 

biogeochemical models that produce chlorophyll-based phytoplankton size estimates 

may prefer to compare to abundance-based algorithm outputs, while models that include 
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optics may prefer to compare to output from absorption-based methods – each enabling 

a more direct comparison depending on the underlying algorithm/model frameworks and 

outputs being compared. 

In the near future, satellite ocean color remote sensing is moving toward more 

advanced radiometric instruments with hyperspectral capability and enhanced spatial and 

temporal resolution (Cetinić et al., 2018). The increased spectral information afforded by 

these upcoming sensors is anticipated to greatly improve our ability to accurately 

separate the absorption attributed to different optically significant in-water constituents 

(i.e., CDOM, NAP, phytoplankton) and retrieve information on phytoplankton community 

composition and size structure. This improved capability will be particularly relevant to 

optically complex waters, including coastal and continental shelf regions like the NES 

ecosystem. Thus, existing absorption-based PSC models may potentially become more 

robust, and newer methods that exploit the full range of available spectral information will 

continue to be developed. Furthermore, to the extent that satellite [Chl-a] estimates 

improve as a result of the increase in spectral resolution, abundance-based approaches 

may continue to be an effective option for estimating PSCs, especially when combined 

with SST or other ecologically relevant environmental parameters. While not considered 

in this work, the integration of high-resolution spectral information with environmental data 

readily attainable from remote sensing should be considered in future PSC algorithm 

development efforts. 
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6. List of Figure and Table Captions 

Table 1. Symbols and definitions. 

Fig.1. Locations of the in situ data and satellite match-ups used in this study. The 200 

and 2000 m isobaths from the 2019 General Bathymetric Chart of the Oceans 

(https://www.gebco.net/) are shown for reference. See Table 2 for information on data 

sources. 

Table 2. Summary of in situ data sources. N denotes the number of samples (after QA) 

and the number in parentheses refers to the number of satellite match-ups. Citations for 

the individual data sets from SeaBASS are also provided. 

Fig. 2. Relative frequencies of in situ observations from the NES data set used in this 

study (blue stairs): (a) HPLC-measured [Chl-a] (N = 786), (b) aph(443) (N = 214) and (c) 

adg(443) (N = 173), with their respective monthly distributions (d-f, black bars). Global 

distributions from an OC-CCI v4.2 annual satellite composite for 2018 are overlaid for 

comparison (red line). Frequencies were normalized by the maximum value. 
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Fig. 3. Comparison of the HPLC-measured [Chl-a] (CHPLC) and the reconstructed [Chl-a] 

from the sum of seven diagnostic pigments (CDP) using the weighting coefficients derived 

from this study (green circles; MAD = 0.12, r = 0.98), the weights derived by Uitz et al. 

(2006) from a global data set (blue triangles; MAD = 0.47, r = 0.96), and no weighting 

coefficients (magenta squares; MAD = 0.62, r = 0.96). 

Table 3. Diagnostic pigments [P] and their associated taxonomic groups and attributed 

size classes, along with weighting coefficients [W] obtained from this study and previous 

studies. The number of data points and geographical regions of each study are also 

provided. 

Table 4. Parameter values for the abundance-based models of Brewin et al. (2010) (Eqs. 

9 and 10) and Hirata et al. (2011) (Eq. 16), obtained from this study and from previous 

studies. 

Fig. 4. Brewin et al. (2010) model parameters (a) Cmpico,nano/Cmpico, and (b) Dpico,nano/Dpico 

as a function of SST. Circle markers show the median parameter values obtained by 

performing a running bootstrap fit of the model (Eqs. 9 and 10) to the in situ 

parameterization data set (N = 418) sorted by increasing SST. The SST-parameter 

relationships were smoothed using a 5-point running average. Dashed lines indicate the 

SST-independent model (B-NES) parameters obtained when fitting the model to the full 

parameterization data set. 
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Fig. 5. Bivariate histograms showing the satellite-to-in situ comparisons of [Chl-a], aph(l), 

and adg(l), shaded by number of observations: (a) [Chl-a] from the standard OC-CCI 

algorithm, (b) [Chl-a] from the regional algorithm of Pan et al. (2010), (c) aph(443), (d) 

aph(490), (e) aph(510), (f) adg(443), (g) adg(490), and (h) adg(510) from the standard OC-

CCI algorithm (QAA_v5). The solid black line is the 1:1 line, dashed black lines indicate 

the 1:1 line ± 30%, and the red line is the Type-II regression line. N denotes the number 

of match-ups, MAD denotes the mean absolute difference, d denotes the bias, r denotes 

the correlation coefficient, and S denotes the regression slope. The aph(l) and adg(l) data 

are shown using the same x- and y-axis range for comparison. 

Fig. 6. Pigment-based estimates of Fsize (a-d) and Csize (e-h) as a function of CHPLC from 

the parameterization data set (N = 418) with abundance-based models overlaid: re-

parameterized B10 model (B-NES, solid black), re-parameterized H11 model (H-NES, 

dashed black), Brewin et al., 2010 (B10, blue), Brewin et al., 2015a (B15, green), Brewin 

et al., 2017 (B17, red), Devred et al., 2011 (D11, violet), Hirata et al., 2011 (H11, brown), 

and Moore and Brown, 2020 (MB20, yellow). 

Fig. 7. Modeled Fsize (a-d) and Csize (e-h) from the B-NES-SST model plotted as a function 

of [Chl-a], with the color gradient illustrating the changes in the model when model 

parameters vary as a function of SST (see Section 2.7.1.7, Fig. 4). The black line indicates 

the SST-independent model, with a single set of model parameters (B-NES). 
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Table 5. Mean absolute difference (MAD) and correlation coefficients (r) for Fsize and Csize 

(values for Csize shown in parentheses) for the SST-dependent abundance-based models 

applied to the in situ parameterization and validation data sets. The percent change in the 

metrics when incorporating SST relative to the SST-independent models is included for 

reference. Percentages are rounded to the nearest 1%. 

Fig. 8. Bivariate histograms showing the satellite-to-in situ comparisons of Csize estimated 

from the regionally parameterized B-NES-SST (a-d), B-NES (a-d), and H-NES (i-l) 

abundance-based models, shaded by number of observations. The solid black line is the 

1:1 line, dashed black lines indicate the 1:1 line ± 30%, and the red line is the Type-II 

regression line. Dashed green lines indicate the maximum chlorophyll concentrations 

imposed by the B-NES model. N denotes the number of match-ups for each parameter, 

MAD denotes the mean absolute difference, d denotes the bias, r denotes the correlation 

coefficient, and S denotes the regression slope. 

Fig. 9. Bivariate histograms showing the satellite-to-in situ comparisons of Csize estimated 

from the absorption-based algorithms applied in this study: (a) Cmicro,nano and (b) Cpico from 

the algorithm of Ciotti et al. (2002) and (c) Cmicro and (d) Cpico,nano from the algorithm of 

Mouw and Yoder (2010). The solid black line is the 1:1 line, dashed black lines indicate 

the 1:1 line ± 30%, and the red line is the Type-II regression line. N denotes the number 

of match-ups, MAD denotes the mean absolute difference, d denotes the bias, r denotes 

the correlation coefficient, and S denotes the regression slope. 
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Fig. 10. Monthly composite imagery for April 2019: (a) OC-CCI [Chl-a], (b) MUR SST, (c) 

Fmicro, (d) Fnano, (e) Fpico, (f) Cmicro, (g) Cnano, and (h) Cpico from the B-NES-SST model. 

Color scales for Fsize are adjusted to reflect the range of the model for each size class 

(see Fig. 8). The black line indicates the 400 m isobath to mark the approximate location 

of the shelf break. 

Fig. 11. Monthly composite imagery for September 2019: (a) OC-CCI [Chl-a], (b) MUR 

SST, (c) Fmicro, (d) Fnano, (e) Fpico, (f) Cmicro, (g) Cnano, and (h) Cpico from the B-NES-SST 

model, as per the previous figure. 

Fig. 12. Comparison of monthly Fmicro imagery from the B-NES-SST and MY10 algorithms 

for April 2019 (a, b) and September 2019 (c, d). The MY10 algorithm applies a 2-D 

average filter, masks pixels that exceed defined thresholds of [Chl-a] and adg(443) (plotted 

in white), and bins Fmicro to increments of 0.1 (see Section 2.7.2.2). The color scale for 

the B-NES-SST imagery was modified to match the output of the MY10 algorithm. The 

black line indicates the 400 m isobath to mark the approximate location of the shelf break. 

7. Appendix A 

Statistical metrics comparing the in situ pigment-based estimates of Fsize and Csize from 

the parameterization and validation data sets with estimates from the abundance-based 

models shown in Figure 6. Statistical calculations were performed in linear space for Fsize 

and log10 space for Csize. Metrics for Csize are shown in parentheses. 
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Parameter Model 
in situ training set (N = 418) in situ validation set (N = 368) 

MAD � r MAD � r 

B-NES 0.18 (0.24) 0.01 (0.11) 0.56 (0.86) 0.19 (0.25) 0.01 (0.13) 0.44 (0.85) 
H-NES 0.18 (0.21) 0.00 (0.10) 0.55 (0.86) 0.19 (0.25) 0.01 (0.12) 0.46 (0.85) 
B10 0.19 (0.24) -0.08 (0.00) 0.56 (0.86) 0.21 (0.26) -0.08 (0.01) 0.44 (0.85) 

Fmicro 
(Cmicro) 

B15 
B17 

0.18 (0.24) 
0.18 (0.24) 

-0.02 (0.05) 
-0.02 (0.07) 

0.56 (0.86) 
0.56 (0.86) 

0.20 (0.25) 
0.19 (0.25) 

-0.04 (0.05) 
-0.02 (0.08) 

0.45 (0.85) 
0.44 (0.85) 

D11 0.19 (0.24) 0.03 (0.10) 0.55 (0.86) 0.19 (0.25) 0.02 (0.09) 0.45 (0.85) 
H11 0.19 (0.25) -0.06 (-0.02) 0.56 (0.86) 0.21 (0.25) -0.08 (-0.04) 0.44 (0.85) 
MB20 0.19 (0.24) -0.06 (0.04) 0.55 (0.86) 0.20 (0.25) -0.05 (0.06) 0.45 (0.85) 
B-NES 0.18 (0.19) -0.01 (0.06) 0.56 (0.67) 0.19 (0.20) -0.01 (0.06) 0.44 (0.72) 
H-NES 0.18 (0.19) -0.01 (0.06) 0.55 (0.67) 0.19 (0.19) -0.01 (0.07) 0.46 (0.73) 
B10 0.19 (0.21) 0.08 (0.14) 0.56 (0.67) 0.21 (0.22) 0.08 (0.14) 0.44 (0.72) 

Fpico,nano 
(Cpico,nano) 

B15 
B17 

0.18 (0.20) 
0.18 (0.19) 

0.03 (0.09) 
0.02 (0.08) 

0.56 (0.66) 
0.56 (0.66) 

0.20 (0.21) 
0.19 (0.20) 

0.04 (0.10) 
0.02 (0.09) 

0.45 (0.71) 
0.44 (0.71) 

D11 0.19 (0.20) -0.03 (0.01) 0.55 (0.65) 0.19 (0.20) -0.02 (0.03) 0.45 (0.70) 
H11 0.19 (0.22) 0.06 (0.09) 0.56 (0.47) 0.21 (0.22) 0.08 (0.12) 0.44 (0.68) 
MB20 0.19 (0.20) 0.06 (0.14) 0.55 (0.67) 0.20 (0.20) 0.05 (0.13) 0.45 (0.73) 
B-NES 0.15 (0.24) 0.00 (0.10) 0.37 (0.66) 0.17 (0.28) 0.01 (0.13) 0.12 (0.74) 
H-NES 0.14 (0.24) -0.01 (0.10) 0.38 (0.67) 0.16 (0.28) 0.00 (0.12) 0.16 (0.72) 
B10 0.18 (0.29) 0.12 (0.25) 0.37 (0.66) 0.21 (0.32) 0.13 (0.27) 0.20 (0.74) 

Fnano 
(Cnano) 

B15 
B17 

0.15 (0.25) 
0.15 (0.25) 

0.05 (0.16) 
0.04 (0.15) 

0.38 (0.66) 
0.37 (0.66) 

0.17 (0.29) 
0.17 (0.28) 

0.05 (0.19) 
0.04 (0.18) 

0.20 (0.74) 
0.20 (0.74) 

D11 0.14 (0.24) -0.04 (0.02) 0.39 (0.65) 0.16 (0.26) -0.04 (0.05) 0.21 (0.73) 
H11 0.16 (0.26) 0.02 (0.09) 0.36 (0.55) 0.19 (0.30) 0.04 (0.15) 0.10 (0.73) 
MB20 0.17 (0.27) 0.07 (0.21) 0.26 (0.67) 0.18 (0.29) 0.06 (0.21) 0.18 (0.74) 
B-NES 0.08 (0.21) -0.01 (0.05) 0.61 (0.55) 0.10 (0.22) -0.02 (0.04) 0.63 (0.54) 
H-NES 0.07 (0.21) 0.00 (0.09) 0.67 (0.53) 0.09 (0.21) -0.01 (0.07) 0.73 (0.59) 
B10 0.08 (0.25) -0.04 (-0.10) 0.63 (0.40) 0.10 (0.25) -0.04 (-0.08) 0.71 (0.40) 

Fpico (Cpico) 
B15 
B17 

0.08 (0.24) 
0.08 (0.24) 

-0.02 (-0.04) 
-0.02 (-0.04) 

0.63 (0.41) 
0.63 (0.43) 

0.10 (0.24) 
0.10 (0.24) 

-0.02 (-0.01) 
-0.02 (-0.02) 

0.70 (0.42) 
0.70 (0.43) 

D11 0.09 (0.24) 0.01 (0.03) 0.63 (0.40) 0.10 (0.24) 0.02 (0.05) 0.71 (0.40) 
H11 0.09 (0.25) 0.05 (0.19) 0.62 (0.52) 0.11 (0.25) 0.04 (0.17) 0.64 (0.51) 
MB20 0.08 (0.24) -0.01 (-0.02) 0.63 (0.34) 0.10 (0.24) -0.01 (0.01) 0.70 (0.38) 
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